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Deployment of a data-based

Data Storage X Data Analytics
9 :> product or service

‘ and [ and Knowledge :

id, and M. Christen. 2019.

/ Loi, M., C. Heitz, A. Ferrario, A.
“Towards an Ethical ata-Based Business.”

Ethical issues

Data Privacy Impact on our world?

Data Protection Threat of societal values, e.g.

* Freedom
e Justice and fairness
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The COMPAS Case azﬁ i

[ 2016: ProPublica investigates a risk Machine Bias
assessment tOOI fOF Cr|m|na| reC|d|V|Sm There's software used across the country to predict future criminals. And it's biased
(COMPAS)

> developed by a private company e
(Northpointe)

> used in many US states over years (>1 Mio
criminals assessed)

ProPublica showed that the tool was racially
biased

> black people more likely to be wrongly
predicted to re-offend than white people

Northpointe had to change its name (now

equivant) as a consequence of the public LRy °rRVARDEZEEER
debate LOW RISK 3 HieHrisk 10

Julia Angwin, Jeff Larson. 2016. “Machine Bias.” Text/html. ProPublica. May 23, 2016.
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.
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Amazon's sexist hiring algorithm £W

amazon

0 2014: Amazon starts building algorithms to review job applicants
[0 2015: Amazon detects gender bias for software developer jobs
> Reason: male-specific expressions
[0 Attempts to remove gender bias failed (!)
[0 2017: Amazon announces the stop of the program, trying to limit

Image problems

Reuters. 2018. “Amazon Scraps Secret Al Recruiting Tool That Showed Bias against
Women,” October 10, 2018. https://www.reuters.com/article/us-amazon-com-jobs-
automation-insight-idUSKCN1MKO08G.
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DERSTANDARD > Wirtschaft -] m Suche O  Anmelden @  Menii
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I he Au Strlan AMS INTERNATIONAL INLAND WIRTSCHAFT WEB SPORT PANORAMA KULTUR ETAT WISSENSCHAFT LIFESTYLE DISKURS MEHR ..

Startseite » Wirtschaft » Wirtschaftspolitik > Arbeitsmarkt

T 931 Postings JOBMARKT

v AMS bewertet Arbeitslose kiinftig per
n Algorithmus
) Ab 2019 wird das AMS das Potenzial von Arbeitslosen flachendeckend von einem

[0 2018: The Austrian Public Employment Service Austria

(Arbeitsmarktservice AMS) the introduction of a software
sorting unemployed people according to their chances on the job
market.

[0 Prediction model developed by private company Synthesis GmbH
[1 Prediction uses a regression model

> Factor “female” has a negative coefficient ( )
[1 Public debate about efficiency vs. fairness — still ongoing

Holl, Jurgen, Glnter Kernbeif3, and Michael Wagner-Pinter. 2018. “Das AMS-Arbeitsmarkt-
chancen-Modell,”
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Context: Data-based decisions in businessaza Ergineering

Individualized data-based decision making

—

data, deC|S|on1
data decision

2 .. 2

decision
- system q . =—  Business Impact

data decision

3 3
data decision

n n

[0 Individualized decision making on humans, based on their data
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Decision system

Prediction
data, | NI odl

=

Decision
algorithm

decision‘.

]

Business goal

..................

[0 Goal: maximize business goal by taking individualized decisions,

based on prediction

> E.g. credit risk, risk of recidivism, risk of failing, ...
[1 Driver: Huge business potential to be harvested
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Algorithmic bias in data-based decisions? azﬁ

Definition «algorithmic bias» ( ):

[ Algorithm: sets of instructions within computer programs that determine how these
programs read, collect, process, and analyze data to generate some readable form of
analysis or output.

[] The term algorithmic bias describes systematic and repeatable errors that create
unfair outcomes, such as privileging one arbitrary group of users over others.

[1 Problem 1: Data-based decision algorithms are typically biased
) Business goal optimization does not care about bias!

[] Problem 2: Developers do not care

> Many are not even aware of the problem of bias = T (= | | ey
[] Problem 3: Unfair algorithms are actually implemented

> Reputation risk, negative societal impact
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Algorithmic bias in research £W

[1 Issue is on the research agenda since about 2015

[1 Many publications in the Machine Learning community

> Reasons for bias (inappropriate data, suboptimal learning procedures,
algorithmic issues, ....)

> Important result: just ignoring sensitive variables (,Fairness Through
Unawareness») does not do the job

> Countermeasures for different prediction algorithms developed
> Etc.
[0 Conceptual learnings

> Fairness can be measured by statistical properties of prediction or
decision algorithm

> Fairness can be defined in different ways
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COMPAS revisited azﬁ Sdead

Prediction Fails Differently for Black Defendants|

WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn’t Re-Offend 23.5% 44.9%

28.0%
Labeled Lower Risk, Yet Did Re-Offend 47.7% ’

Actual Values

Positive {1) Negative (0)

[0 For binary prediction problems: Confusion )

matrlx ;3; Positive (1) TP EP
0 COMPAS: 1 = re-offend, O = not re-offend I
[0 Result: FP rate higher for black people - g feeelh) M ™

Junfair®
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Fairness criteria aw

[0 Simplest problem statement:
> Consider two groups (A and B)
> Consider a prediction of binary variable Y: prediction =y , true value=y
> Decision = prediction: D=y

[0 Some fairness criteria:

Demographic parity: P|D=14|=P|D=1|B]

EqualFPR P D=1|y=0,4|=P|D=1y=0,B]

Equal odds = Equal FPR and Equal TNR

Equal Positive Predictive Value: P[y =1

VWV WV WV

p=1,4]=P|y=15=1,B]
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What is fair? - Fairness definitions azﬁ Engineering

. Citation
Definition Paper N Result
3.1.1| Group fairness or statistical parity | [12] 208 X
3.1.2| Conditional statistical parity [11] 29 v
3.2.1| Predictive parity [10] 57 v
3.2.2| False positive error rate balance | [10] 57 X
3.2.3| False negative error rate balance | [10] 57 v
3.2.4| Equalised odds [14] 106 X
3.2.5| Conditional use accuracy equality | [8] 18 X
3.2.6| Overall accuracy equality (8] 18 v
3.2.7| Treatment equality [8] 18 X
3.3.1| Test-fairness or calibration [10] 57 v
3.3.2| Well calibration [16] 81 ¥
3.3.3| Balance for positive class [16] 81 v
3.3.4| Balance for negative class [16] 81 X
4.1 | Causal discrimination [13] 1 X
4.2 | Fairness through unawareness [17] 14 v
4.3 | Fairness through awareness [12] 208 X
5.1 | Counterfactual fairness [17] 14 -
5.2 | No unresolved discrimination [15] 14 -
5.3 | No proxy discrimination [15] 14 -
5.4 | Fair inference [19] 6 -

Table 1: Considered Definitions of Fairness

[l

Fairness can be defined
differently
> E.g. Arvind Narayanan (FAT*

2018): Tutorial: 21 fairness
definitions and their politics

Typically, different fairness
criteria are mutually exclusive:

They cannot be met
simultaneously! (Kleinberg et
al 2016)

Verma, Sahil, and Julia Rubin. 2018. “Fairness Definitions Explained.” In Proceedings of D A choice has to be made!

the International Workshop on Software Fairness - FairWare '18, 1-7. Gothenburg,

Sweden: ACM Press. https://doi.org/10.1145/3194770.3194776
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COMPAS revisited (ll) azva\ Lot

[0 COMPAS actually fulfills an important fairness criterion: positive
predictive value (PPV) is well met (Kleinberg et al 2016,
Chouldechova 2017)

[0 But: FPR and FNR are different for blacks and whites = this was
what ProPublica brought up

[0 It can be shown for arbitrary prediction algorithms (Chouldechova
2017): _
) ppp__ P 1=PPV (
1-p PPV

1-FNR)

prevalence
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What is fair? W

[0 Fairness and justice has a long history in moral and political
philosophy

[0 Equal rules for all (procedural fairness)
> Business potential lies exactly in discrimination!

[0 So we have to analyse the consequences
> Consequentialist ethics

[0 Different philosophical concepts of fairness and justice, e.g.
>  Welfare economics and utilitarism
> different theories to explain what makes discrimination wrong
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The problem of algorithmic fairness azﬁ

For developing a ,fair algorithm®, two problems have to be solved
[1 An ethical choice problem (decision): What is fair?
> may depend on the concrete situation
> s an ethical question, not a technical one
> choice must be justified and defended (towards customers and society)
> Result: fairness criterion expressed in statistical terms (measurable)

[ A technical problem: Create a decision algorithm that meets the specified
fairness criterion

> ML literature shows some solutions for some fairness criteria, but not a general
solution procedure

> Issues: Input data for learning procedures? How to train models? How to assess
decision models? ...

Necessary: Integration of ethics and engineering!
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fur Angewandte Wissenschaften

Integrated solution approach azﬁ

Statistical fairness Defined fairness
criterion defined criterion met
Ethical decision Technical ,Fair’
making: What is fair? implementation algorithm
Based on solid philosophical * Maximization of business goal  Assessment possible
concepts with fairness constraints, or
Structured approach (discourse) ¢ Multicriteria optimization
Do-able for non-philosophers « Fairness by design®

(managers and Data Scientists!)
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Conclusion SN

[l

[l

[l

Algorithmic fairness is an important issue for all companies doing data-based
business

> Second big issue after data privacy and protection
> Ethical responsability AND economic risk
Fairness is an ethical issue, not primarily a technical one
> Different fairness definitions possible
> What is considered fair depends on situation and stakeholders

Creating fair algorithms needs the combination of an ethical decision making
process (which fairness do we want to produce?) with a technical solution method
(how to produce this fairness?)

> Ethical discourse needs integration of all stakeholders - engineering can‘t do it alone!
> Specific expertise is needed for the model builders — often a problem today

Field is new, up to now no integrated methodology is available to make sure that
decision algorithms are fair in a well-defined, understood and explainable way

>  There is some work to do!
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Thank you for your attention!
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