

Models and Simulation in Business: Understand the Past - Optimize the Present - Prepare the Future

CTI – project Complexity 4.0

Rudolf M. Füchslin Applied Complex Systems Sciences

Why Models?

- Check your understanding of the past
- Optimize the present
- Predict the future if you know the present
- Estimate the future if you guess the present
- Explain what we see: Transform data into meaning
- Produce data and train modern controllers (e.g. deep neural nets)
- The non ideal world: Dealing with fluctuations
- Find your weaknesses, identify your strengths

What is a Model?

A model maps input onto output

- Example
 - Input: prizes of basic resources, processes and markets
 - Output: revenues

What is a Simulation?

 You have a precise idea of how the input is transformed into the output

input simulation output

Black Box Models

 Sometimes, you don't know what is going on, but you may have data (input – output pairs)

Hybrid Models

 Usually, it is something in between perfect knowledge and complete ignorance

How Do We Do It?

 There is a zoo of methods for simulations, black box and hybrid models. There are pets and beasts.

What is a Model Good For?

Assume you have a model

What can we do with it?

What is a Model Good For?

- Understand the past
- Optimize the present
- Predict the future
- Quantify future scenario
- Analyze resilience

Understand the Past

- Model reflects your understanding of processes, inputs and external factors
- Simulation reproduces past input output pairs correctly → Your understanding of the system is probably highly adequate
- Simulation fails → Can indicate incomplete knowledge
- Action: Sharpening of ideas about system and environment

Zurich University of Applied Science

Example: Identify External Factors

Initial model, does not reproduce past

New influence factors are identified, model reproduces past input-output pairs

Optimize the Present

- Every model is validated with past data
- One may study variants of the model and optimize the system
- Important: Optimization requires a fitness function!
- There are different types of fitness functions; the user can experiment with models and objectives

Example: Central or Local?

- Central or local production?
- How to compare costs vs. resilience?

Prepare for the Future

- Assumption: A validated model
- Given the input and the external factors, we can predict the outcome
- Test of scenarios

Example: Best/Worst Case

- Input/output and external factors in the future may not be known
- Reasonable parameter ranges may be known
- model based sampling in the parameter space
- identify best, worst case and most likely case

Example: Best/Worst Case

Simulated paths of the value of an asset using Monte Carlo

Strategy:

- Prepare for the worst,
- expect the most likely,
- hope for the best! (Gen. S. McChrystal)

Sample Paths with \$45,000 Annual Withdrawals

The Real World: Fluctuations

- The external factors / inputs may be varying over time
- The model can estimate the variations in output, assuming fluctuations in input / external factors

Example: Robustness

What scenario is preferable?

centralized production, large fluctuation of total output

local production, small fluctuation of total output

Identify Weaknesses and Strength

- Vary external factors of individual components
- Identify the most vulnerable part of the system
- Identify the resilient parts of the system

What Information Do We Need?

- What question do you want to answer:
 - Understand the past: Is there an appropriate understanding of external factors, processes and I/O – relations? Is data available?
 - Optimize the present: How to optimize the system? What is the "fitness function"?
 - Prepare the future: Scenario analysis (best/worst case)
 - Is the system resilient?
- What do you know?
- What do you guess? How do you guess?

Zurich University of Applied Science

Happy to Answer Questions

Prof. Dr. Rudolf M. Füchslin

Institute for Applied Mathematics and Physics
Head of Group for Applied Complex Systems Sciences
Technikumstr. 9
CH-8401 Winterthur, Switzerland
www.zhaw.ch/iamp

European Centre for Living Technology Co - director S.Marco 2940 30124 Venice, Italy http://www.ecltech.org/

Office: +41(0)58 934 75 92

+39 0 41 234 75 94

Mobile: +41(0)79 232 74 36

Skype: rudolf.marcel.fuechslin

rudolf.fuechslin@zhaw.ch

Zurich University of Applied Sciences

Machine Learning

Dr. Thilo Stadelmann

Institute of Applied Information Technology
Deputy head of Information Engineering group
Technikumstr. 9
CH-8401 Winterthur, Switzerland
www.zhaw.ch/init

ZHAW Datalab Head of the board www.zhaw.ch/datalab

Office: +41(0)58 934 72 08 Mobile: +41(0)79 934 02 80

Skype: thilo_at_skype

thilo.stadelmann@zhaw.ch

Discrete Event / Agent-based Simulation Business und Service Process Modelling

Dr. Jürg Meierhofer

Office: +41 (0) 58 934 40 52 juerg.meierhofer@zhaw.ch

Patrick Kehrli

Office: +41 (0) 58 934 64 04

patrick.kehrli@zhaw.ch

Institute of Data Analysis and Process Design (IDP) ZHAW Plattform Industrie 4.0 Rosenstrasse 3 CH-8401 Winterthur, Switzerland www.zhaw.ch/idp

Simulation & Optimization

Dr. Lukas Hollenstein

Institute of Applied Simulation Center for Simulation & Optimization Einsiedlerstrasse 31a CH-8820 Wädenswil, Switzerland

www.zhaw.ch/ias www.zhaw.ch/ias/simopt

Office: +41 (0)58 934 54 02 Mobile: +41 (0)78 870 66 22

Skype: lukasho

lukas.hollenstein@zhaw.ch

