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Motivation



Mechanical assemblies

• Mech. assembly: product consists of multiple, potentially hundreds

of, subcomponents which interact with each other mostly in a

non-linear manner.

• Goal: understand how to pass down quality requirements from the

mech. assembly down to the subcomponents.

• Building an exact mathematical model for the transfer path is

impossible due to the system complexity.

• Data-driven optimization: optimality defined over a finite dataset.
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Specific use-case: steering gear

• Focus: connection between the vibroacoustic behavior of steering

gear (SG) and ball nut assembly (BNA), a major vibroacoustic

contributor of the steering gear.

• Goal: understand how to pass down vibroacoustic quality

requirements from the SG down to the BNA.
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Current quality test

Both the BNA and the SG undergo the same vibroacoustical quality test,

which consists of turning the product left, then right, at two different

rotational speeds.
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Current quality representation

The vibrational signals resulting from the test are considered as order

spectra, where the orders represent frequencies which correspond to the

rotational velocity or its multiples.
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Problem Description



Problem description

• Two data matrices containing the BNA and SG order spectra.

• Set of binary quality labels describing whether the SG failed its

vibroacoustic test due to the BNA.

• Goal: build classifier which for each BNA predicts whether it will

cause the corresponding SG to be faulty.

• No-information-rate: carefully choose accuracy metric, prevalence

of good parts of 0.965.

• Metric: Cohen Kappa κ(f ) := po−pe
1−pe , where po denotes the

relative observed agreement and pe represents the hypothetical

probability of chance agreement between the binary labels and the

quality predictions for the BNA.

• Metric: Business Cost Weighted sum of false positives and false

negatives, prioritizing false positive recognition with positive integer

factor ε.
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Solution Approaches



Quality zones

• Current quality examination method consists of a binary

classification of spectral signals.

• Set tight thresholds for the BNA orders which correspond to peculiar

steering gear orders (and are thus responsible for NOK in the

steering gear test).

• BNA OK if its order spectrum is majorized by a predefined

piecewise constant function and NOK if there occurs any violation

of the function.

• Alternatively use quality windows which do not occupy the complete

spectral grid.
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MILP Notation

• Number of windows to be found denoted by Z .

• Number of available order spectra in training dataset denoted by N.

• Spectral order grid defined as S = [s1, . . . , sK ] for ordered integer

indexes 1, . . . ,K .

• Maximum spectral amplitude in dataset as Xmax = max1≤n≤N,
1≤k≤K

Xn,k .

• Binary quality labels available as y .

• Window width restricted to minimum tmin and maximum tmax.

• Left window borders denoted by αi , right window borders by βi ,

corresponding upper thresholds by γi .

• Recognition of false positives prioritized with positive integer factor

ε.

• MILP formulation presented in [BAH19].
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MILP Formulation

min
∑

n∈[N]
y(n)=1

ε · un +
∑

n∈[N]
y(n)=0

vn (1)

s.t.: 1 ≤ αz ≤ K − tmin + 1, ∀z ∈ [Z ], (2)

tmin + 1 ≤ βz ≤ K + 1, ∀z ∈ [Z ], (3)

αz < αz+1, ∀z ∈ [Z − 1], (4)

βz < βz+1, ∀z ∈ [Z − 1], (5)

βz ≤ αz+1, ∀z ∈ [Z − 1], (6)

αz + tmin ≤ βz , ∀z ∈ [Z ], (7)

βz ≤ αz + tmax, ∀z ∈ [Z ], (8)

αz −M(1− µk,z) ≤ k , ∀k ∈ [K ], z ∈ [Z ], (9)

k < αz + M · µk,z , ∀k ∈ [K ], z ∈ [Z ], (10)

βz −M · λk,z ≤ k , ∀k ∈ [K ], z ∈ [Z ], (11)
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MILP Formulation

k < βz + M(1− λk,z), ∀k ∈ [K ], z ∈ [Z ], (12)

µk,z + λk,z − 1 = ψk,z , ∀k ∈ [K ], z ∈ [Z ], (13)

γz −M(1− ψk,z) ≤ bk , ∀k ∈ [K ], z ∈ [Z ], (14)

bk ≤ γz + M(1− ψk,z), ∀k ∈ [K ], z ∈ [Z ], (15)

Xmax + 1−M · ψk,z ≤ bk , ∀k ∈ [K ], z ∈ [Z ], (16)

bk ≤ Xmax + 1 + M · ψk,z , ∀k ∈ [K ], z ∈ [Z ], (17)

Xn,k −M(1− gn,k) ≤ bk , ∀n ∈ [N], k ∈ [K ], y(n) = 1, (18)

bk < Xn,k + M · gn,k , ∀n ∈ [N], k ∈ [K ], y(n) = 1, (19)

K · un ≤
∑K

k=1 gn,k , ∀n ∈ [N], (20)∑K
k=1 gn,k ≤ K + un − 1, ∀n ∈ [N], (21)

bk −M · (1− hn,k) < Xn,k , ∀n ∈ [N], k ∈ [K ], y(n) = 0, (22)
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MILP Formulation

Xn,k ≤ bk + M · hn,k , ∀n ∈ [N], k ∈ [K ], y(n) = 0, (23)

vn ≤
∑K

k=1 hn,k , ∀n ∈ [N], (24)

hn,k ≤ vn, ∀n ∈ [N], k ∈ [K ], (25)

un, vn ∈ {0, 1}, ∀n ∈ [N], (26)

gn,k , hn,k ∈ {0, 1}, ∀n ∈ [N], k ∈ [K ], (27)

µk,z , λk,z , ψk,z ∈ {0, 1}, ∀k ∈ [K ], z ∈ [Z ], (28)

αz ∈ [K − tmin + 1] ∀z ∈ [Z ], (29)

βz ∈ {tmin + 1, . . . ,K + 1} ∀z ∈ [Z ]. (30)
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GA solving approach

Pursue alternate direction approach, iteratively maximizing κ w.r.t the

thresholds while keeping change points fixed and vice versa [BFH19b].

• Maximization w.r.t. change points carried out by genetic algorithm.

• Maximization w.r.t. threshold values carried out via Nelder-Mead

downhill simplex method.

Repeat procedure for k = 1, 2, . . . and choose k∗ manually with domain

experts to optimize trade-off between solution quality and solution

complexity.
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Algorithm

1: function Run(order spectra X , binary quality labels, number of

change points k , maximum number of generations B)

2: Initialize population π[0] of 100 randomly generated functions in

Pk

3: for i ← 1,B do

4: Update current population

5: for all f in π[i − 1] do

6: Update threshold values for f such that κtrain(f ) is

maximized while keeping the change points constant

7: end for

8: Breed next generation

9: π[i ]← Evolve(π[i − 1])

10: end for

11: return Optimized piecewise constant threshold function f ∗ ∈ Pk

12: end function
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Update

• Keep change point positions constant, adapt threshold values.

• Data-driven objective function, the mapping f 7→ κtrain(f ) is not

differentiable w.r.t to the threshold values.

• Employ the Nelder-Mead downhill simplex method, a

gradient-free maximization technique.

• Stop the iteration when the increments in κtrain and fi both are less

than 10−4.
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Evolution

• In each iteration retain those 20% individuals with the highest

fitness value for reproduction, add 5% randomly generated ones.

• Pairs of step functions are chosen from these individuals at random

with replacement and crossed-over to generate offspring, refilling the

population.

• A proportion of 15% of the offspring is mutated after generation.
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Cross-over

• Merge the k change points of the two parent functions, run

agglomerative cluster algorithm on the 2k positions.

• Cut resulting dendrogram so that k clusters result, with the

centroids of these clusters chosen as the offspring change points.

• Average the function values of the parent functions over the new

intervals to obtain new values.
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Mutation

• Change point locations are randomly shifted with a probability of

0.15, under the constraint of preservation of order.

• The maximal allowed deviation is additionally constrained depending

on the order.

• Use weight functions obtained via deep canonical correlation

analysis to introduce larger change point variation in highly

correlating areas of the spectra.
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Challenges

• The mathematical model of the solution as a piecewise constant

function with multiple change points and covering the complete

spectral order grid S implicitly assumed that each order contributes

information relevant for the classification and should thus be subject

to a threshold.

• The Nelder-Mead downhill simplex method is computationally

expensive and its gains were significantly diminished after a random

mutation or after the averaging crossover mechanism, which acted

as a serious perturbation.

• Crossover: if the parent solutions focus on different order intervals

responsible for different root faults, the crossover technique is

unlikely to find itself a root fault by clustering and averaging.
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Enhancement

• Enhanced version of this algorithm proposed in [BAH19].

• Impose upper thresholds only on select areas of the order spectra.

• Renounce to the use of the computationally heavy Nelder-Mead

method.

• More efficient crossover mechanism which selects the best windows

from both parents based on their achieved cost reduction.

• Mutations are only accepted if they help reduce cost; mutation

strength is diminished linearly with each generation, finally reaching

a value of 0 for the last generation.
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Enhanced crossover mechanism

• Selection of two parents at random with replacement.

• For each window of each parent, it computes the confusion matrix

resulting from the application of the window’s upper threshold and

the associated cost resulting from the number of false positives and

false negatives.

• After a window is selected, other overlapping windows are

disregarded.

• Confusion matrices of all other window possibilities are updated,

removing from the cost calculation the order spectra already

violating previous windows.

• Benefit: the best non-overlapping windows from either parent are

selected.

• Benefit: the negative cost impact of a window is diminished if the

false negatives were already misclassified by another window.
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Response surface

Response surface is not so smooth for current problem when using

data-driven optimization.
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Mutual information

• The previous approach disregards the SG curves, only uses the BNA

curves and SG labels.

• Noise is present in the data, and we may end up setting thresholds

on noise.

• Necessary to find out which BNA curve patterns correlate with other

patterns in the SG curves (mutual information).

• Consider the SG vibroacoustic behavior as another view of the BNA

behavior containing heavy noise [BFH19a, BFH19b].

• Idea: find new lower-dimensional representations of the BNA and SG

curves which are highly linearly correlated.

• If there is noise in either view that is uncorrelated with the other

view, the learned representations do not contain the noise.

• The maximally correlated encodings should be the most predictive

of, and by, each other.
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Linear Canonical Correlation Analysis

• Assume two random vectors (X̂ , Ŷ ) ∈ Rn1 × Rn2 with covariances

(Σ11,Σ22) and cross-covariance Σ12.

• CCA computes orthogonal sets of latent scores (w
′

1X̂ ,w
′

2Ŷ ),

obtained using:

(w∗1 ,w
∗
2 ) = arg max

w1,w2

corr(w
′

1X̂ ,w
′

2Ŷ ) = arg max
w1,w2

w
′

1Σ12w2√
w

′
1Σ11w1w

′
2Σ22w2

.

• The latent scores are maximally correlated linear combinations of the

X̂ and Ŷ vectors.

• Projections required to have unit variance and subsequent

projections to be uncorrelated with previous ones.
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Linear Canonical Correlation Analysis

• Assemble the top k projection weight vectors w i
1 into the columns of

a matrix A1 ∈ Rn1×k (analog A2).

• Optimization problem for the top k ≤ min(n1, n2) projection pairs:

maximize Tr(A
′

1Σ12A2)

subject to A
′

1Σ11A1 = A
′

2Σ22A2 = I ,

• Define T := Σ
− 1

2
11 Σ12Σ

− 1
2

22 .

• Solution: assuming non-singularity of covariance matrices, maximal

achievable correlation computed by summing the top k singular

values of T .

• Optimal value encountered at (A∗1 ,A
∗
2) = (Σ

− 1
2

11 Uk ,Σ
− 1

2
22 Vk), where

Uk ,Vk are the matrices of the first k left-, respectively right-

singular vectors of T .
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Deep CCA

• Assume training size of m and final encoding length of o in the final

layer of each neural network.

• Introduce H1 ∈ Ro×m,H2 ∈ Ro×m as matrices resulting from each

neural networks.

• Use centered data matrices H̄1 = H1 − 1
mH11 and H̄2 to estimate

the covariance matrices Σ̂11 = 1
m−1 H̄1H̄

′

1 + r1I , Σ̂22 and

cross-covariance Σ̂12 = 1
m−1 H̄1H̄

′

2, where r1 > 0, r2 > 0 denote

regularization constants.

• Correlation: sum top k singular values of T, if o=k then we have

corr(H1,H2) = Tr (T
′
T )

1
2 .
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Deep CCA

New encodings not ordered by explained correlation like in linear CCA,

perform linear CCA on top of outputs of the neural networks.
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Computational Experiments and

Results



MILP results for data subsets

Number of spectra
Time [s] GA parameters

MILP GA a b c d e f

Optimal value: 0
Number of windows: 3

10 302.43 14.53 0.4 0.1 0.5 0.7 100 100

16 31274.52 17.26 0.4 0.1 0.5 0.7 100 100

20 5397.47 16.05 0.2 0.5 0.3 0.8 100 100

24 5876.58 17.08 0.4 0.2 0.4 0.7 100 100

Optimal value: 1
Number of windows: 3

10 5405.22 46.76 0.3 0.3 0.4 0.7 200 100

16 65968.40 14.31 0.4 0.3 0.3 0.5 100 100

18 66945.91 120.86 0.3 0.2 0.5 0.4 500 200

30 175994.50 57.62 0.3 0.3 0.4 0.7 200 200

Optimal value: 0
Number of windows: 5

10 207.54 16.58 0.4 0.1 0.5 0.7 100 100

12 56644.21 58.83 0.3 0.2 0.5 0.7 200 200

16 37592.43 1463.14 0.4 0.3 0.3 0.8 1000 1000

Optimal value: 1
Number of windows: 5

20 57721.81 90.02 0.4 0.3 0.3 0.7 300 200

Table 1: Comparison of the results of the MILP approach and of the genetic

algorithm (GA) in terms of solution quality and computation time on the 12

distinct datasets described in [BAH19] using either 3 or 5 quality windows.
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Optimal thresholds of the enhanced GA
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Results of the enhanced GA

Minimum window length

5 10 20 30 40 50

Cost Time [s] Cost Time [s] Cost Time [s] Cost Time [s] Cost Time [s] Cost Time [s]

N
u

m
b

er
of

w
in

d
ow

s

1 1388.67 138.41 1235.17 81.64 1230.33 104.29 1229.17 95.07 1266.50 84.33 1222.83 83.06

2 1095.83 166.98 1089.67 140.43 1099.50 212.09 1091.83 176.93 1091.83 158.96 1102.17 152.93

3 1058.67 247.61 1074.67 220.12 1075.17 362.42 1088.50 281.47 1092.33 258.08 1096.17 260.85

4 1011.50 295.41 1021.33 287.71 1031.00 511.69 1020.83 325.29 1050.83 327.59 1113.17 331.27

5 997.83 357.72 1037.50 347.34 1030.67 623.63 1057.00 353.56 1108.83 397.18 1090.33 329.29

6 956.17 436.35 988.83 424.36 1011.83 868.24 1056.17 497.46 1059.83 451.06

7 947.00 524.56 948.17 506.52 1034.67 839.72 1007.33 535.40

8 939.33 607.68 946.00 570.59 1019.17 808.69 1057.00 524.85

9 895.50 721.20 928.50 796.97 984.17 936.60

10 844.17 795.09 886.67 1254.24 1018.00 1106.82

11 869.17 859.47 887.67 1587.75 1003.50 1030.41

12 849.50 924.95 938.17 1454.65 1009.50 1091.94

13 857.67 1014.22 900.17 1445.38

14 805.17 1092.32 944.33 1993.66

15 801.50 1184.60 879.33 1574.93

Table 2: For each combination of required number of quality windows and

minimum window length, the results give insights into the obtained solution

quality in terms of incurred cost on the test data and computation time on the

training data. The best solution features a cost of 801.50, which implies a

scrap cost reduction of 49.91% with respect to the currently employed BNA

quality classification method.
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Results CCA and neural network approaches

LCCA KCCA DCCA MLP DCCA CNN MLP Ospec CNN Ospec

Sup. Semi Sup. Semi Sup. Semi Sup. Semi Sup. Semi Sup. Semi

Cohen Kappa 0.23 0.35 0.27 0.36 0.31 0.32 0.33 0.39 0.37 0.39 0.43 0.45

AUPR 0.22 0.37 0.20 0.28 0.29 0.28 0.34 0.32 0.33 0.27 0.41 0.38

AUROC 0.79 0.87 0.72 0.78 0.75 0.76 0.81 0.81 0.87 0.84 0.88 0.86

Matthews C.C. 0.25 0.36 0.27 0.36 0.32 0.33 0.34 0.39 0.38 0.39 0.43 0.45

Specificity 0.18 0.40 0.31 0.36 0.28 0.29 0.46 0.48 0.51 0.40 0.43 0.47

Sensitivity 0.99 0.97 0.97 0.98 0.98 0.98 0.96 0.96 0.96 0.98 0.98 0.98

Youden J 0.17 0.37 0.28 0.34 0.26 0.28 0.41 0.45 0.46 0.38 0.41 0.45

Table 3: Performance of the different methods, ranging from the CCA

components being classified by SVM to the MLP and CNN Neural Networks

learning directly on the order spectra [BHF19].
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Further work



Heavily imbalanced data

• Performance: metrics which consider the imbalance ratio.

• Learning: assign higher weights to existing underrepresented class

samples or rebalance dataset.

• Rebalancing: Oversampling, downsampling or combination of both.

• Select methods: SMOTE, SMOTE-Tomek, SMOTE-ENN.

• Synthetic samples: on the line btw. two data points.
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Synthetic samples

• Problem: synthetic samples on line btw. two data points adequate

for discrete/distinct features.

• Measurement curves: underlie measurement noise, x-coordinate of

feature responsible for quality label may vary slightly.

• Both ’parents’ x , y feature a peak, but at minimally different x-axis

coordinate.

• Problem are not the synthetic samples, but their labels.
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Label Synthetic samples

• Idea: generate synthetic samples as usual, but allow their labels to

be learned.

• Label Spreading: Zhou et al. - Learning with local and global

consistency (2004).

• Possible to use learned labels only for unlabeled synthetic samples,

or also for original labeled data.

• Alternative for dealing with noisy samples instead of rule-based

removal decisions.

• Usage of ’clamping’ factor α affects probability of a sample adopting

the information from its neighbours instead of its initial label.
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Label Spreading
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Conclusion



Recapitulation

• Introduced the quality propagation problem for mechanical

assemblies.

• Presented a first solution approach based on MILP and genetic

algorithms.

• Proposed a second solution framework based on mutual information

between measurement curves.

• Presented the weaknesses of rebalancing algorithms for curves and a

potential solution approach.
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