Module title	Imaging for the Life Sciences
Code	CO4
Degree Programme	Master of Science in Life Sciences
Group	Computation
Workload	3 ECTS (90 student working hours: 42 lessons contact = 32 h; 58 h self-study)
Module	Name: Dr. Georg Spinner
Coordinator	Phone : +41 (0)58 934 54 43
	Email: georg.spinner@zhaw.ch
	Address: ZHAW Life Sciences und Facility Management, Schloss 1, 8820 Wädenswil
Lecturers	Dr. Georg Spinner, ZHAW, Dr. Andreas Hock, ZHAW, Dr. Norman Juchler, ZHAW, Prof.
	Dr. Steffi Lehmann, ZHAW
Entry requirements	Bachelor level of analysis, linear algebra, statistics, python programming skills
	There is an online tutorial available for students without python skills.
Learning outcomes	After completing the module, students will be able to:
and competences	Understand the techniques of different imaging modalities used in medicine and
	the life sciences, e.g. ultra-sound, X-rays, CT, MRI, SPECT, PET etc.
	To interpret typical image data from the life sciences and (bio-)medicine
	Perform standard image processing techniques, e.g. de-noising, segmentation,
	registration etc. using Python / Matlab or similar
Module contents	Imaging methods
	Image processing techniques & workflows
	Application to different fields in the life sciences
	Student projects
Teaching / learning	Lectures, accompanied with practical work
methods	
Assessment of	1. Project work (50%)
learning outcome	2. Written exam (closed-book) (50%)
Format	7-weeks
Timing of the	Spring semester, CW 15-21
module	
Venue	Blended learning format. Presence sequences take place in Olten
Bibliography	
Language	English
Links to other	
modules	
Comments	
Last Update	07.12.2022