
.

Project thesis (Computer Science)

Reinforcement Learning in a Multi-Agent System
for Train Scheduling

Authors Ralph Meier
Dano Roost

Main supervisor Andreas Weiler

Sub supervisor Thilo Stadelmann

Date 20.12.2019

Zürcher Fachhochschule

Erklärung betreffend das selbständige Verfassen einer
Projektarbeit an der School of Engineering

Mit der Abgabe dieser Projektarbeit versichert der/die Studierende, dass er/sie die Arbeit selbständig
und ohne fremde Hilfe verfasst hat. (Bei Gruppenarbeiten gelten die Leistungen der übrigen Gruppen-
mitglieder nicht als fremde Hilfe.)

Der/die unterzeichnende Studierende erklärt, dass alle zitierten Quellen (auch Internetseiten) im Text
oder Anhang korrekt nachgewiesen sind, d.h. dass die Projektarbeit keine Plagiate enthält, also keine
Teile, die teilweise oder vollständig aus einem fremden Text oder einer fremden Arbeit unter Vorgabe
der eigenen Urheberschaft bzw. ohne Quellenangabe übernommen worden sind.

Bei Verfehlungen aller Art treten die Paragraphen 39 und 40 (Unredlichkeit und Verfahren bei
Unredlichkeit) der ZHAW Prüfungsordnung sowie die Bestimmungen der Disziplinarmassnahmen der
Hochschulordnung in Kraft.

Ort, Datum: Unterschriften:

……………………………………………… ……………………………………………………………

 …………………………………………………………...

 ……………………………………………………………

Das Original dieses Formulars ist bei der ZHAW-Version aller abgegebenen Projektarbeiten zu Beginn
der Dokumentation nach dem Abstract bzw. dem Management Summary mit Original-Unterschriften
und -Datum (keine Kopie) einzufügen.

Zusammenfassung

Die steigende Anzahl der Pendler bring die Kapazität des Schienennetzes der Schweizeri-
schen Bundesbahnen SBB immer mehr an seine Grenzen. Da der Ausbau der Infrastruktur
nicht mit den Passagierzahlen mithalten kann, bemüht sich die SBB, mehr Züge in dich-
teren Abständen auf ihr Netz zu bringen. Für die Planung des dichteren Zugverkehrs
experimentiert die SBB auch mit Technologien des maschinellen Lernens, insbesondere
mit Reinforcement Learning (RL). Dabei soll ein Algorithmus selbstständig Strategien
erlernen, um das gegebene Problem zu lösen. In diesem Fall handelt es sich dabei um
das Steuern von Zügen, welche möglichst zeitnah zu ihrem Ziel geführt werden sollen.
Kollisionen gilt es dabei zu verhindern und potenzielle Hindernisse wie defekte Züge müs-
sen umfahren werden. Auch können Züge mit verschiedenen Geschwindigkeiten unterwegs
sein, was bei der Planung berücksichtigt werden soll.
Diese Arbeit ist dabei ein Beitrag zur sogenannten Flatland Challenge, einem Wettbewerb
der SBB und der Crowdsourcing-Plattform AICrowd, bei welchem das beschriebene Pro-
blem mittels einer zur Verfügung gestellten Simulation des Schienennetzes gelöst werden
soll. Der Wettbewerb ist aufgeteilt in zwei Runden mit wachsendem Schwierigkeitslevel.
Diese Schienensimulation erlaubt es, eigene Lösungen für das Problem zu trainieren und
zu evaluieren. Die Schwierigkeit dabei ist, die Züge so zu steuern, dass sie sich auch in
komplexen Situationen nicht blockieren. Dazu ist primär die Zusammenarbeit der Züge
von grosser Bedeutung.
Der präsentierte Lösungsansatz verwendet den Asynchronous Advantage Actor-Critic Al-
gorithmus, einen der derzeit besten RL-Algorithmen, welcher verteiltes Lernen ermöglicht.
Der präsentierte Ansatz orientiert sich dabei stark an der Ausgangslösung von Stephan
Huschauer. Nach der ersten lauffähigen Version wurde der Ansatz nach und nach mit
unterschiedlichen Features erweitert, wie beispielsweise einem veränderten Kontrollme-
chanismus der Züge, Curriculum Learning oder verteiltem Lernen über mehrere Rech-
ner. Um den Fortschritt zu quantifizieren wurden für sämtliche Änderungen Experimente
durchgeführt. Durch das Hinzufügen unterschiedlicher Features konnte eine signifikante
Verbesserung der Performanz verzeichnet werden. In Runde 1 war es dabei möglich, die
Ankunftsrate von den 16.6 % der Ausgangslösung auf 48.9 % zu verbessern. Für die an-
spruchsvolleren Eisenbahnnetze der 2. Runde, für welche keine Ausgangslösung existiert,
konnte dank weiteren Verbesserungen ebenfalls ein respektables Resultat erzielt werden.
Die präsentierte Lösung konnte eine Ankunftsrate von 29.1 % erreichen, was zum Evaluie-
rungszeitpunkt dem 4. Platz von insgesamt 24 teilnehmenden Teams entsprach. Für einen
praktischen Einsatz ist die präsentierte Lösung jedoch noch nicht geeignet, dies bedarf
weiterer Forschung.

1

Abstract

The increasing number of commuters is pushing the capacity of the Swiss Federal Railways
SBB rail network to its limits. Since the expansion of the infrastructure cannot keep up
with the increasing number of passengers, SBB is exploring new ways to bring more trains
onto its network. To achieve this goal, SBB is also experimenting with machine learning
technologies such as reinforcement learning (RL). The goal for this type of algorithm is
to independently learn strategies in order to solve the problem at hand, in our case the
challenge of guiding trains to their assigned destinations. Besides not colliding with other
trains, it is also necessary to avoid potential obstacles such as defective trains and to take
different speed profiles into account.
This work is a contribution to the Flatland Challenge, a competition published by SBB
and the crowdsourcing platform AICrowd, which aims to solve the problem described by
using a provided simulation of the rail network. The competition is divided into two
rounds with increasing difficulty. This rail simulation allows us to train and evaluate own
solutions for the given problem. The main task is to control the trains in cooperative way
so they do not block each other even in complex situations. The selected solution uses the
Asynchronous Advantage Actor-Critic Algorithm, a state of the art RL algorithm which
supports distributed learning. The approach presented is based on the baseline solution
presented by Stephan Huschauer. After establishing the first running version, the approach
was improved with an array of new features such as a modified train control mechanism,
curriculum learning or distributed learning over multiple computers. To quantify the
progress, experiments were conducted for all applied changes. By adding these features, a
significant improvement could be achieved. In round one, it was possible to improve the
train arrival rate from 16.6% of the baseline solution to 48.9%. For the more demanding
second round, there is no baseline available. The solution presented was able to achieve
a train arrival rate of 29.1%, which corresponded at submission time to the 4th place of
a total of 24 participating teams. However, the solution presented is not yet suitable for
practical use and requires further research to achieve a useful performance in a real-world
scenario.

3

Preface

We would like to give special thanks to:

• Andreas Weiler and Thilo Stadelmann for their great support during this work, for
their helpful tips and for pushing us in the right direction.
We are grateful for the opportunity to dive deep into the field of reinforcement
learning as part of this project.

• Remo Maurer for being very generous with providing computing infrastructure, es-
pecially the infrastructure test server.

4

Contents

1 Introduction 6
1.1 Baseline . 6
1.2 Goal of this work . 7
1.3 Work Approach and Sectioning . 7

2 Technical and Theoretical Foundation 8
2.1 Reinforcement Learning . 8
2.2 The Flatland Rail Environment . 10

3 Basic Implementation 13
3.1 A3C Implementation . 13
3.2 Entropy Balancing . 13
3.3 Observation Design . 14
3.4 Technical Implementation Aspects . 16

4 Experiment Design and Analysis 17
4.1 Reproducibility . 17
4.2 Reinforcement Learning for Flatland . 17
4.3 Distributed Architecture and Parallelism . 26

5 Results 29
5.1 Round 1 . 29
5.2 Round 2 . 29

6 Discussion and Outlook 31
6.1 Review of the Application of Reinforcement Learning 31
6.2 Practicability in a Real-World Scenario . 31
6.3 Ideas for Future Research . 31

7 Listings 33
7.1 Bibliography . 33
7.2 List of Figures . 35
7.3 List of Tables . 36
7.4 Glossary . 37
7.5 Abbreviations . 38

8 Appendix 39
8.1 USB Flash Drive Content . 39
8.2 Official assignment . 39

5

1 Introduction

1.1 Baseline

This work explores a real-world usage of multi-agent reinforcement learning (RL) for con-
trolling train traffic in a complex railway system. As part of the Flatland challenge, a con-
test created by the Swiss Federal Railways SBB and the crowdsourcing platform AICrowd
[1], we try to improve the performance of RL based train guidance and rescheduling. The
goal of the challenge is to successfully guide all trains to their assigned target stations in a
simulated environment called Flatland environment. This is challenging because a single
wrong decision can cause a chain reaction that makes it impossible for many other trains
to successfully reach their destinations. The endeavor is further complicated by trains
with different speed profiles and the possibility of malfunctioning trains. In the words of
SBB and AICrowd, the challenge is described as follows [1]:

The Flatland Challenge is a competition to foster progress in multi-agent re-
inforcement learning for any re-scheduling problem (RSP). The challenge ad-
dresses a real-world problem faced by many transportations and logistics com-
panies around the world (such as the Swiss Federal Railways, SBB). Different
tasks related to RSP on a simplified 2D multi-agent railway simulation must
be solved. Your contribution may shape the way modern traffic management
systems (TMS) are implemented not only in railway but also in other areas
of transportation and logistics. This will be the first of a series of challenges
related to re-scheduling and complex transportation systems.

The challenge consists of two parts [1].

• Part 1 includes avoiding conflicts with multiple trains (agents) on a given environ-
ment. The difficulty thereby is, that the layout of the environment is not known
upfront.

• Part 2 aims to optimize train traffic which includes trains with different speed pro-
files, malfunctioning trains, fewer switchover facilities and in general more scheduled
trains in a shorter time.

This work is based on the work of Stephan Huschauer [2] and further investigates the idea
to use the Asynchronous Advantage Actor-Critic Algorithm (A3C) [3], a state of the art
RL algorithm, to solve the task. Besides the work of S. Huschauer, this work is also related
to the work of Bacchiani, Molinari and Patander [4]. Their work also aims to apply the
A3C algorithm in a cooperative multi-agent environment and investigates communication
free cooperation. Unlike the Flatland challenge, the goal of this work is to cooperate on
a road traffic environment. By applying the A3C algorithm, the work shows that it is
possible to learn cooperation by treating the other agents as part of the environment.
Both the works of Bacchiani, Molinari and Patander as well as the work of S. Huschauer
use a shared policy for all acting agents.

6

CHAPTER 1. INTRODUCTION 1.2. Goal of this work

1.2 Goal of this work

The aim of the work is to explore the use of the A3C algorithm in the Flatland multi-agent
environment and to improve on the approach of S. Huschauer [2].
While there may be better ways to solve the given problem than reinforcement learning,
we mainly focus on pure RL but give our intuition in chapter 5 on how the explored
approach could work together with other techniques to improve its success. This work is
targeted towards an audience with a brief understanding of deep reinforcement learning.
A basic introduction to the topic is given in section 2.1. This introduction is focused on
the techniques required to understand the applied A3C algorithm and does not cover the
whole field of RL. Also, an introduction into the Flatland environment can be found in
section 2.2. For a deeper understanding of the complex Flatland system, it is recommended
to study the Flatland documentation and specification [5] as well as the official Flatland
introduction [1].

1.3 Work Approach and Sectioning

We divide this work into 4 main sections:

• Basic Implementation: An overview of our basic implementation to solve the
Flatland challenge. Also, we shortly describe the technologies used.

• Experiment Design and Analysis: We identify parts of the implementation that
offer room for improvement. To verify our work, we create experiments and analyse
them afterward.

• Results: A discussion of the final solutions that were submitted for evaluation in
the Flatland challenge for both round 1 and round 2.

• Discussion and Outlook: An analysis of components in the solution that would
need further improvement.

We take the idea of using the A3C algorithm to solve the Flatland problem and try various
modifications in an attempt to improve its performance. We proceed by giving an idea,
what we want to achieve, followed by an experiment setup and an experiment analysis to
either prove or disprove our hypothesis. We do this in an iterative manner, to gradually
come closer to a well-performing solution for Flatland.
In our experiments, we focus exclusively on Flatland round 2. While we compare our
solution for round 1 with the baseline from S. Huschauer in chapter 5, all technical im-
provements have also become part of our solution for round 2.

7

2 Technical and Theoretical Foundation

2.1 Reinforcement Learning

Basic Definitions

In recent years, major progress has been achieved in the field of reinforcement learning
[6–8]. In RL, an agent learns to perform a task by interacting with an environment ℰ as
displayed in Figure 2.1. On every timestep 𝑡 the agent 𝑎 needs to take an action 𝑢. The
selection of this action 𝑢 is based on the current observation 𝑠. The success of the agent is
measured by reward ℛ received. If the agent does well, it receives a positive reward from
the environment, if it does something bad, there is no or negative reward.

Figure 2.1: Reinforcement learning overview

The goal of the agent is now to take an action that maximizes the expected reward for all
future timesteps 𝔼[ℛ𝑡+1 +ℛ𝑡+2 +ℛ𝑡+3 +...|𝑠𝑡] given the current observation 𝑠𝑡.
This estimation should be as close as possible to the sum of actually received rewards.
Often, these received rewards are discounted with a constant factor 𝛾 to the power of
timestep 𝑡. With 𝛾 being something slightly less than 1, this accounts for the fact that
rewards far in the future are hard to estimate. The current observation 𝑠𝑡, also known as
the current state is used to determine which action 𝑢 to take next. An agent can observe
its environment either fully or partially. The cycle of taking actions and receiving a new
state is repeated until the environment has reached a terminal state. Each roll-out of such
an environment is called an episode.

Value-Based vs. Policy Gradient-Based Methods

Reinforcement learning methods are categorized into value-based methods and policy
gradient-based methods [9, 10]. Those variants differ on how they select an action 𝑢
from a given state 𝑠.

8

CHAPTER 2. FOUNDATIONS 2.1. Reinforcement Learning

Value-based RL algorithms work by learning a value function 𝒱(𝑠) through repeated roll-
outs of the environment. 𝒱(𝑠) aims to estimate the future expected reward for any given
state 𝑠 as precisely as possible. Using this approximation 𝒱(𝑠) we can now select the
action 𝑢 that takes the agent into the next state 𝑠𝑡+1 with the highest expected future
reward. This estimation 𝒱(𝑠) is achieved by either a lookup table for all possible states
or a function approximator. In this work, we solely focus on the case that 𝒱(𝑠) is imple-
mented in the form of a neural network as a function approximator. To train the neural
network, we try to minimize the squared difference between the estimated reward 𝒱(𝑠)
and the actual reward ℛ:

𝑙𝑜𝑠𝑠𝑣𝑎𝑙𝑢𝑒 = (ℛ−𝒱(𝑠))2

In some value-based algorithms such as Deep Q-Networks (DQN) [6], a 𝒬(𝑠,𝑢)-function is
used. This function tries to estimate the expected future reward on taking action 𝑢 from
the given state 𝑠. We do not consider algorithms that use a 𝒬-function in this work.
The second category of reinforcement learning algorithms is the so-called policy gradient-
based methods. These methods aim to acquire a stochastic policy 𝜋(𝑠) that maximizes
the expected future reward ℛ by taking actions with certain probabilities. Taking actions
based on probabilities solves an important issue of value-based methods, which is, that by
taking greedy actions with respect to state 𝑠, the agent might not explore the whole state
space and misses out on better ways to act in the environment.

Asynchronous Advantage Actor-Critic Algorithm

The progress in RL has led to algorithms that combine value-based and policy gradient-
based methods, generally known as actor-critic algorithms. The Asynchronous Advantage
Actor-Critic Algorithm, developed by Mnih et al. [3] fits into this category. It uses both a
policy 𝜋(𝑠) and a value function 𝒱(𝑠). Both are usually separate function approximators
(neural networks in our case).

• The actor can be seen as the policy 𝜋(𝑠), that selects the action 𝑢 based on state 𝑠.

• The critic is the value function 𝒱(𝑠) that estimates, how much reward can be ex-
pected from a certain state 𝑠 on.

To enhance the process of learning policy 𝜋(𝑠), the policy loss gets multiplied by the
difference between actually received reward ℛ and the estimated future reward 𝒱(𝑠).
This difference is called the advantage 𝒜.

𝒜 = ℛ−𝒱(𝑠)

This advantage is then used to update the policy.

𝑙𝑜𝑠𝑠𝑝𝑜𝑙𝑖𝑐𝑦 = − log(𝜋(𝑠𝑡)) ⋅𝒜

For actions where the received reward ℛ exceeds the expected reward 𝒱(𝑠) the policy
update gets multiplied by a positive advantage. Therefore, the update of the neural
network gets adjusted into a direction that favors experienced actions.
What makes A3C different from other actor-critic algorithms is, that it can be used in a
distributed way. Many workers work at the same time on a centralized model. How we take
advantage of these features is discussed in 4.3 Distributed Architecture and Parallelism.

9

2.2. The Flatland Rail Environment CHAPTER 2. FOUNDATIONS

2.2 The Flatland Rail Environment

The Flatland environment is a virtual simulation environment provided by the Swiss Fed-
eral Railway SBB and the crowdsourcing platform AICrowd. The goal of this environment
is to act as a simplified simulation of real train traffic. The current state of the simulation
is shown in Figure 2.2.

Figure 2.2: Screenshot from a running Flatland environment.

Using Flatland, we can train RL algorithms to control the actions of trains, based on
observations on the grid. Flatland has a discrete structure in both its positions and
its timesteps. The whole rail grid is composed of squares that can have connections to
neighboring squares. In certain squares, the rail splits into two rails. On those switches,
the agent has to make a decision on which action it wants to take. Dependent on the type
of switch, there are different actions available as visible in Figure 2.3.

Figure 2.3: Possible switches in the Flatland environment from [5].

An exception poses switches that are approached from a side that does not allow to take
an action, e.g. approaching a case 2 switch from the top. All rail parts, independent

10

CHAPTER 2. FOUNDATIONS 2.2. The Flatland Rail Environment

whether it is a switch or not also allow to take the actions to do nothing (remain halted,
or keep riding), to go forward or to brake. The action space is therefore defined by:

𝑈 = {do nothing, go left, go forward, go right, brake}

It is important to note that trains do not have the ability to go backwards and therefore
need to plan ahead to avoid getting stuck. To learn which actions to take, the agents have
to learn to adapt to an unknown environment due to the fact that the environments are
randomly generated and differ on each episode. Depending on the given parameters, the
size and complexity of the grid can be adjusted.
The goal of each agent is to reach an assigned target train station as fast as possible.
Agents that reach this destination are removed from the grid which means, they can no
longer obstruct the path of other trains.

Observations

The Flatland environment allows creating observation builders to observe the environment
for each agent. While it is possible to observe the whole grid, this does usually not make
sense due to the fact that many parts of the rail grid are not relevant to a single train.
Flatland offers by default two different observation builders.

GlobalObsForRailEnv creates three arrays with the dimensions of the rectangular rail
grid. The first array contains the transition information of the rail grid. For each cell,
there are 16 bit values, 4 bit for each possible direction a train is facing.

TreeObsForRailEnv creates a graph with sections of the grid as nodes from the per-
spective of the train. This means, only the switches which the train is actually able to
take define a single node. As an example, a train on a case 2 switch heading from the top
to the bottom is not able to make a decision on this switch and therefore, the TreeObs-
ForRailEnv does not put the sections before and after the switch into two different nodes
but just into a single node.
The nodes of the tree observation offer a number of fields that allow selecting specific
features to create numeric input vectors for function approximators such as neural net-
works. The tree observation builder offers 14 distinct features for each rail section. These
include:

• Distance until own target encountered: Cell distance to the own target railway
station. Infinity if the target railway station for the agent is not in this section.

• Distance to other agent encountered: Cell distance to the next other agent on this
section.

• Distance to next branch: The length of this section in number of tiles.

• Minimum distance to target: The minimal cell distance to the target after this
section is finished.

• Child nodes: The nodes the agent is able to take after this section ends. Each child
node is associated with a direction (left, forward, right).

11

2.2. The Flatland Rail Environment CHAPTER 2. FOUNDATIONS

Agent Evaluation

AICrowd and SBB also provide a system for agent evaluation. This system evaluates the
policy on a number of unknown environments and outputs the percentage of agents that
reached their assigned destination as well as the received reward while doing so. The
evaluation reward scheme is thereby as follows [11]:

ℛ𝑡 = {−1, if 𝑠𝑡 is not terminal
10, otherwise

The difficulty of the evaluation level does differ between round 1 and round 2. While round
1 offered many connecting rails between the starting position and the assigned target of an
agent, round 2 has more sparse connections and usually only provides 2 to 4 rails between
cities. The concept of cities has been added in round 2. Those differences can be clearly
seen in Figure 2.4 with the densely connected environment for round 1 versus the sparsely
connected environment for round 2.

(a) Evaluation round 1. (b) Evaluation round 2.

Figure 2.4: Comparison between two screenshots from evaluation environments from Flat-
land round 1 and round 2.

12

3 Basic Implementation

3.1 A3C Implementation

Originally, the Asynchronous Advantage Actor-Critic Algorithm has been designed for
use in a single agent environment [3]. By applying it in a multi-agent environment, we
implicitly convert the environment into a non-stationary system. While applying A3C in
a multi-agent setting, the other agents can be viewed as part of the environment. This
means, the behavior of the environment changes while training, due to the fact that the
behavior of the other agents changes. Gupta et al. find in [12], that RL methods like Deep
Q-Networks and Trust Region Policy Optimization are not performing well in a multi-
agent environment, due to the combination of experience replay and non-stationarity of
the environment. Unlike the baseline version from [2], we do not use an experience replay
buffer with older episodes. Otherwise the sampled experience might represent old agent
behavior which is then learned. Instead, we directly perform updates of the neural network
using the latest episodes, as proposed in [3].
An important implementation detail in our version is, that we do not perform updates
during episodes but only at their end. The reason for this is, that the only possibility for
an agent to receive reward is at the end of the episode. Therefore any previous update
would have a reward of 0 and would not help the training process.

3.2 Entropy Balancing

In RL, it is of great importance to find the right combination of exploration and exploita-
tion [13]. During exploration, the agent explores as much of the state space as possible.
This enables the agent to later exploit the found states that are beneficial. Without this
exploration phase, there is a chance that the agent settles on sub-optimal policies too
quickly and ignores parts of the state space the agent has never seen and therefore does
not consider in his action selection. To avoid an early convergence in A3C, it is common
to use an additional entropy term. This entropy term is defined as [3]:

𝐻(𝑝) = −
𝑈

∑
𝑢=0

log(𝑝𝑢) ⋅ 𝑝𝑢

Where 𝑝 is a possibility distribution over all available actions 𝒰. The entropy is multi-
plied with a factor 𝛽 and added to the policy loss. This has an effect of preventing a
convergence towards a single action, especially in the early phase of training. Without
this entropy term, we often observe such an early convergence with grave consequences for
the training performance. We start training with 𝛽 = 0.0025. This value proved to offer
a nice balance between exploration and exploitation in our case. We also observe, that
it is recommendable to reduce this factor 𝛽 to zero once a stage of training is achieved,
in which the main objective of the training is not to find the fastest path but to evade
collisions with other agents.

13

3.3. Observation Design CHAPTER 3. BASIC IMPLEMENTATION

3.3 Observation Design

The Flatland environment provides a base to build custom observation builders that can
be used to create a state representation for the agents as explained in section 2.2. In
this work, we do not consider the usage of the grid-based observation builders. Both the
Flatland development team as well as S. Huschauer find, that tree-based observations work
better in their experiments [2]. The Flatland specification states [14]:

Considering, that the actions and directions an agent can choose in any given
cell, it becomes clear that a grid-like observation around an agent will not
contain much useful information, as most of the observed cells are not reachable
nor play a significant role in for the agents decisions.

Based on the provided TreeObsForRailEnv (see section 2.2), we implement a custom ob-
servation builder that we use to produce an input vector for our neural network. This
observation builder takes the current state of the environment and produces a fixed size
numeric vector with values between 0.0 and 1.0 for each agent. This input vector should
fulfill a number of requirements:

• Each rail section the agent possibly rides on next should be visible to the agent.

• The agent should be able to detect, whether there is another train coming the op-
posite direction on any section.

• The agent should be able to detect on each switch which turn is the faster way to
his target.

• On switches, the agent should be able to see if a turn does lead to his target, even
if it is not the fastest way. If this is the case, taking this turn might even be a good
option to evade possibly blocking situations.

• For the next grid tile, the agent should be able to detect if it is a switch and if so, if
it is one the agent can make a decision on. (see section 2.2 for non-usable switches).

The provided TreeObsForRailEnv produces a graph with a node for each section of the
rail. We extend these nodes with additional information about train traffic coming the
other direction than the one the agent is heading. We take the information from these
nodes and convert them into a numeric vector. In case that there is a dead end, we fill
the observation with zeros (this could only happen in Flatland round 1, round 2 does not
have dead ends). After the conversion, we concatenate all section observations into one
large vector with information for all upcoming sections as illustrated in Figure 3.1.

14

CHAPTER 3. BASIC IMPLEMENTATION 3.3. Observation Design

train

[0.0, 0.3, 1.0, 0.0,… , 0.0]

Train specific observation

[0.4, 0.0, 0.77,… , 0.0] +

Tree observation

[0.0, 0.3, 1.0, 0.0,… , 0.0, 0.4, 0.0, 0.77,… , 0.0]

Figure 3.1: Illustration of the tree observation mapped onto the Flatland environment.
Each colored bar represents information about a section.

While this vector already contains all required information outside of the agent, we add
another vector with information regarding the agent itself (train specific observation in
Figure 4.6). This vector contains the speed of the agent, the max. speed of the agent, the
type of the current tile, the direction the agent is heading and the type of tile the agent
is currently located on. The same idea is used by Bacchiani, Molinari and Patander in [4]
with the difference that in their work, the environment observation has no tree structure.

15

3.4. Technical Implementation Aspects CHAPTER 3. BASIC IMPLEMENTATION

3.4 Technical Implementation Aspects

In this section, we discuss the most important implementation aspects of our work.

Used Frameworks and Libraries

In Table 3.1, the most important libraries and frameworks of this work are listed.

Technology Version Description
Cython 0.29.14 Cython allows to compile Python code to natively running

C code. We use Cython to speed up our predictions and
observations of the rail environment.

Flask 1.1.1 We use Flask as our central model server (see Distributed
Architecture and Parallelism). This Flask application col-
lects gradient updates, distributes the current network
weights and allows access to the latest versions of the ob-
servation and parameter files.

MessagePack 0.6.2 MessagePack allows very fast serialization. The resulting
binary data is also considerably smaller than serialization
with formats like JSON. We use MessagePack to serialize
both weights- and gradient-update before sending between
worker and model server.

Python 3.6 The whole code for our project is written in Python.
Tensorflow 2.0.0 Tensorflow provides a framework for both deep learning as

well as monitoring the learning process of RL using Tensor-
board.

ZLib (built-in) ZLib allows to compress data in Python. We use ZLib to
reduce our payload-size while sending gradient- and weight
updates.

Table 3.1: The most important technologies used in this work.

Usage of Multiprocessing

Due to performance limitations of multithreading in Python, we use the multiprocessing
library for parallel execution instead. While multiprocessing is harder to manage than
multithreading, the performance limitations of the global interpreter lock [15] do not
apply.
The worker processes that are used for training are started by a single master process.
This master process handles all required initialization routines as well as restarting the
worker processes in case of an error. The usage of parallel processing is described in 4.3
Distributed Architecture and Parallelism.

16

4 Experiment Design and Analysis

4.1 Reproducibility and Experiment Setup

It is important to note, that the training process of reinforcement learning and especially
multi-agent reinforcement learning can be hard to reproduce. Depending on the initial
weights of the neural networks and the layout of the environments, the performance may
vary on each restart. Also in a distributed algorithm, the number of workers can signif-
icantly influence the training performance. If not differently specified, we executed all
presented experiments on machines with the same specifications (see section 4.3).
Another aspect that is hard to reproduce is training stability. In A3C, an important in-
strument to prevent the policy from converging too early is using an additional entropy
term [3]. Our way to maintain stability with changing environments is discussed in sec-
tion 3.2.
For better comparability, we keep our evaluation versions for the training as similar to
each other as possible. If not differently specified, we run evaluations with the following
setup:

• For all evaluations, a Flatland round 2 environment is used.

• We use an environment with the size 100x100 tiles with 14 individual agents.

• The map contains 20 cities

• There is a maximum of 3 rails between cities and a maximum of 4 rails inside cities

• Based on the Flatland specification, the maximum allowed number of timesteps is
1608 [14].

• For each experiment, we use the training data of the first 12 hours.

To analyze the performance of the solution, we run an analyzer that executes 20 roll-outs
of the environment using the same neural network parameters. After these 20 roll-outs,
we update the neural network parameters. For each evaluation round, we use the same 20
environment layouts. To compare the performance in a graph, we take the mean number
of agents that arrived at their target and plot that in our graph.

4.2 Reinforcement Learning for Flatland

Action Space Reduction and Script Policy Actions

The Flatland environment is designed in a way to resemble a classical RL environment.
This means, on every timestep, we receive observations for each agent, calculate an action
and hand this action to the environment, visible in pseudo-code in algorithm 1.

17

4.2. RL for Flatland CHAPTER 4. EXPERIMENTS

Algorithm 1: Default episode for Flatland environment
Data: initialized Flatland environment ℰ, initial observation 𝑠a

t=0 for all agents
Result: terminal Flatland environment
initialize buffer ℬ
while episode not terminal do

create empty action array 𝒜
for every agent 𝑎 do

get current state 𝑠a
t of agent

// Fetch action for agent, based on current state
𝒜[𝑎] ← from policy 𝜋(𝑠a

t)
end
call 𝑒𝑛𝑣.𝑠𝑡𝑒𝑝(𝒜)
retrieve reward ℛ
append 𝒜 to buffer ℬ
retrieve all new states 𝑠𝑡+1

end
use buffer ℬ for training of policy 𝜋

While this makes sense in an environment where agents need to take an action on every
timestep (such as Atari games), in Flatland most of the time the only reasonable action
is to move forward as visible in Figure 4.1. Only around switches, an agent needs to take
actions other than just keep going forward.

Figure 4.1: Screenshot from Flatland environment. A train heading to the left. The only
reasonable action is to ride forward.

Every action that is produced by the neural network should be included for training, so
the network can adapt to this type of situation. The problem arises now, that all these
actions of riding forward are included in the training of the agent. The influence of the
actions that actually matter (e.g. the ones around switches) is thereby not as big as it
could be, because large portions of the training data are situations that do not actually
require decisions.

Experiment Setup

To solve this problem, we implement hard-coded rules that the agents follow as long
as they are not in a situation to make a decision. Only around switches, the neural
network policy is activated. As a consequence, the data used for training has fewer sam-
ples but the samples available are of higher quality. The training with this mechanism
is shown in algorithm 2. For training, we only use the experience collected near the switch.

18

CHAPTER 4. EXPERIMENTS 4.2. RL for Flatland

Algorithm 2: Improved learning algorithm for Flatland environment
Data: initialized Flatland environment 𝑒𝑛𝑣, initial observation 𝑠a

t=0 for all agents
Result: terminal Flatland environment
initialize buffer ℬ
while episode not terminal do

create empty action array 𝒜
for every agent 𝑎 do

if agent is near to a switch then
get current state 𝑠a

t of agent
// Fetch action for agent, based on current state
𝒜[𝑎] ← from policy 𝜋(𝑠a

t)
else

𝒜[𝑎] ← 𝑢𝑓𝑜𝑟𝑤𝑎𝑟𝑑)
end

end
call 𝑒𝑛𝑣.𝑠𝑡𝑒𝑝(𝒜)
retrieve reward ℛ
if agent was near switch then

append 𝑠𝑡, 𝒜 and ℛ to buffer ℬ
end
retrieve all new states 𝑠𝑡+1

end
use buffer ℬ for training of policy 𝜋

Experiment Analysis

This drastically improves training performance as visible in Figure 4.2. While both ver-
sions have the potential to perform well, based on the provided observation data, we
observe that the version without the action reduction is not able to perform nearly as well
as the improved version with reduced actions.

00:00h
02:00h

04:00h
06:00h

08:00h
10:00h

12:00h

Hours of training

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge
of

ag
en

ts
ar

riv
in

g

With action reduction
Without action reduction

Figure 4.2: Comparison of training with and without action reduction

19

4.2. RL for Flatland CHAPTER 4. EXPERIMENTS

Neural Network Architecture

In RL, the architecture of neural networks is often rather simple [3, 6]. The already of-
ten sample inefficient process of reinforcement learning should not be slowed down by
a difficult architecture. We observe a stable training performance by using 3 fully con-
nected layers of size 128, 64 and 64 with ReLU activation for both the actor and the critic
network. Differently than S. Huschauer in [2], we do not use convolutional layers. The
reason for this is the way our observation vector is composed (see section 3.3). In this
vector, every element corresponds with an actual information in the mapped rail section.
Convolutional layers would especially make sense if there were patterns to extract from
the observation vector.
Another relevant aspect of neural networks is the topic of recurrent layers. Recurrent lay-
ers allow the agent to remember information from previous timesteps. The original A3C
publication shows, that it is possible to achieve a significant performance improvement
using long short-term memory layers (LSTM) [3]. Also S. Huschauer uses an LSTM-block
to improve training [2].

Experiment Setup

To quantify this improvement, we run an experiment to compare a version with LSTM
layer to a version without. Both versions use the default evaluation environment without
curriculum.

00:00h
02:00h

04:00h
06:00h

08:00h
10:00h

12:00h

Hours of training

0

2

4

6

8

10

N
um

be
r

of
ag

en
ts

ar
riv

in
g

With LSTM
No LSTM

Figure 4.3: Comparison of training performance between a version with an LSTM-layer
and a version without. It is evident that the version with LSTM performs
better than the version without.

Experiment Analysis

In Figure 4.3 it can be observed that an LSTM-layer helps the training process. While the
initial training phase is slightly faster for the version without a recurrent layer, we observe
a better overall performance and therefore keep the LSTM-layer as part of our solution.

20

CHAPTER 4. EXPERIMENTS 4.2. RL for Flatland

Curriculum Learning and Reward Assignment

The reward assignment in Flatland can be freely configured. But as long as there is not
some distance-to-target dependent reward function, the probability that an agent with an
uninformed policy finds its target station is small. This is especially the case for large envi-
ronments with many trains on it. For example, most evaluation environments of Flatland
round 2 have up to 200 individual agents and are up 100x100 tiles large [11]. The roll-out
of such an environment takes a lot more time than the roll-out of a 20x20 environment
with 5 trains. Also, the probability, that a train arrives in a small environment is larger
and therefore, the experience is more valuable for training. To improve training times, it
makes therefore sense to start with a small environment and move to larger ones, once the
agents mastered pathfinding and basic collision avoidance.

Experiment Setup

In order to verify the meaningfulness of such a curriculum, we run an experiment with
a large environment with dimensions 100x100 and 50 individual agents. One experiment
tries to learn its policy directly using this environment. The other experiment uses a
curriculum that gradually gets more difficult. All parameters of the used curriculum are
listed in Table 4.1.

Level 0 Level 1 Level 2 Level 3 Level 4
Next level on success rate 70% 70% 75% 70% 60%
Nr. of agent 4 8 12 16 20
Env. size 25x25 30x30 40x40 50x50 50x50
Num. cities 5 8 10 12 16
Max. rails between cities 1 2 2 2 2
Max. rails in city 2 2 3 3 3

Table 4.1: Curriculum level specifications for our experiment to compare a version with
curriculum to a version without.

Experiment Analysis

As visible in Figure 4.4, the version without curriculum is not able to notably learn from
the experience. We suspect that is caused by too much variance in the environment and
not enough successful experience to learn from. After all, an agent needs to reach its
target to get reward, and in a large environment combined with an uninformed policy,
this is potentially very difficult.
For the version that uses a curriculum, it appears that the learning speed is slowed down
on higher curriculum levels. With increasingly more difficult levels and more agents, the
frequency of available network updates is being slowed down due to the fact that a roll-out
of the environment takes longer. We therefore think, it is desirable to keep the curricu-
lum levels small and primarily increase the number of agents instead of the size of the
environment.

21

4.2. RL for Flatland CHAPTER 4. EXPERIMENTS

00:00h
02:00h

04:00h
06:00h

08:00h
10:00h

12:00h

Hours of training

0

5

10

15
N

um
be

r
of

ag
en

ts
ar

riv
in

g

Enabled curriculum
Disabled curriculum

Figure 4.4: Comparison of training performance between a version with and a version
without curriculum learning.

Agent Communication

Communication in multi-agent reinforcement learning is a topic of active research [16].
While we do not use communication in the final submission, in this section we discuss a
number of ideas regarding possible the use of communication in the Flatland environment.
As a starting point for this work, we asked the question how blocking is avoided in the
real-world. On the SBB rail environment railroad signals are used to prevent collisions
between trains. These signals are controlled by a central control instance that directs the
flow of traffic for all trains on the network. The Flatland environment does not provide a
communication channel nor a rail road signal system, but participants of the challenge are
allowed to implement one themselves. In the following discussion, we summarize available
options to implement such a communication channel. An initial intuition for the problem
gives the question, if it was a human guiding the train, would she/he be able to successfully
steer the train to its assigned target without communication? We assume that this is not
the case. While classical traffic rules (e.g. right has priority over left) can help to avoid
collisions, we do think that in the case of railroad traffic this does not suffice. In the
real-world, rail traffic is controlled by a control center that gives the trains permission to
go or tells them to wait. Having one central control instance solves one of the big problems
of such a system which is, that there is a chance that two agents take an action at the
same moment which brings both of them into a non-resolvable situation. An example for
such a situation would be two agents that enter a rail section at the same timestep. Both
of them would have had the possibility to choose a different path, but both perceived the
section as empty and decided to enter. Combined with the fact that trains cannot drive
backwards (at least in Flatland), both trains will not be able to arrive at their assigned
target stations. As a solution to this dilemma, we discuss four ideas that could potentially
improve the situation.

22

CHAPTER 4. EXPERIMENTS 4.2. RL for Flatland

• Negotiation: To solve the problem of conflicting actions at the same timestep, it
would be possible to introduce an iterative communication channel, on which the
agents can negotiate, what agent is allowed to take an action next and who has to
wait for another timestep. The number of iterations could be determined by the
outcome of the process. As long as there is no resolution about who is allowed to
take an action and who is not, another negotiation round is added.
While this procedure might help to avoid blocking situations, it could certainly not
completely remove them. Especially complex situations with many agents in a small
area could still prove to be difficult, even with a negotiation mechanism in place.

• Prioritized planning: An approach to solve the dilemma of conflicting actions at
the same timestep could be to introduce an artificial order of importance among the
agents. Then the next 𝑛 timesteps could be planned for the most important agent.
The second agent now takes the planning of the first agent into account and tries
to come up with a plan that does not obstruct the planned route of the first agent.
This process is repeated for all following agents.
We think that possible conflicts could probably be resolved by backtracking and
adjusting the priorities of the trains.

• Unconstrained communication: While negotiation would prevent an agent from
taking an action, the goal of unconstrained actions would not be to constrain the
action space but rather to convince the agent to choose an action stop or do nothing
and wait for the next timestep if the situation is uncertain. Also for unconstrained
actions, it would make sense to be an iterative process, similar to the negotiation
approach. As long as not all agents mark their communication as completed, another
communication round is added.
We suspect that a problem with this approach could be that it would have much
slower convergence than the negotiation approach. The reason for this assumption
is the fact, that such an unconstrained communication would not directly influence
the actions of the agents. It would be necessary to learn both the ”speaking” and the
”interpretation”, without direct consequences. On the positive side, we think that
this approach could enable more sophisticated strategies and maybe even improve
planning.

• Announcing communication: Different from unconstrained communication, un-
der announcing communication we mean agents that announce their next action
over a shared communication channel. As a metaphor, one can imagine a bus on
a narrow mountain street honking before each turn. A mechanism like this would,
similar to prioritized planning, require to receive the agent actions in a sequential
way, so that each following agent could react to the actions of the previous agents.

We think that the two areas of prioritized planning and unconstrained communication
would have the biggest potential to improve train behavior in our Flatland solution. In
this work, we do not consider implementing planning and therefore focus on the case of
unconstrained communication. We argue, that a communication channel that does not
provide a defined protocol could eventually also have the benefit of allowing the agents to
plan ahead.

23

4.2. RL for Flatland CHAPTER 4. EXPERIMENTS

Experiment Setup

To verify the assumption that it is possible to learn a communication protocol to plan
ahead, we create an experiment that reduces the observation space to a shared commu-
nication buffer. For this experiment we define a Flatland layout with two train stations
and only one rail that connects them. We let a train start in each train station and assign
the opposite station as its target. We also add two detour tracks that allow the agents to
evade a collision with the agent as can be seen in Figure 4.5.

Figure 4.5: Screenshot of the communication experiment setup.

The agents only need to take an action on switches they encounter, otherwise, they just
drive forward. The agents can not observe the upcoming sections and only have access to
the said buffer. Due to the symmetry of the environment, both agents need to take an
action at the same time. The agents can select an action between 0 and 5. On taking
an action, we start a communication loop that allows the two agents to alternately read
from the buffer, calculate an action and write that action back into the buffer. This loop
continues until both agents output the action 5 (= we are done with the communication).
After finishing communication, both agents can select an action to take next in the envi-
ronment. If both agents take the same action and collide, we cancel the episode and give
a reward of -1. If they make it around each other and reach their targets, they receive a
reward of +1. The agents have no way to know, if they are agent 1 or 2 (otherwise, agent
1 could just always make a loop and agent 2 could go straight).

24

CHAPTER 4. EXPERIMENTS 4.2. RL for Flatland

Experiment Analysis

We observe, that the agents are able to learn a protocol themselves. After 100’000 episodes
of training, the success rate to fulfill the task is as high as 95%. Previously to the ex-
periment, we assumed, that if the agents would learn a way of communication, it would
probably look the same for every episode. This assumption has not been confirmed. In all
observed cases, the agents need between 2 and 5 communication timesteps. In Table 4.2,
we list 6 examples of observed communications with their regarding outcomes.

Timestep Actions agent 1|2 Outcome
0 4 | 2
1 5 | 5 Success
0 3 | 0
1 1 | 5
2 5 | 5 Success
0 3 | 5
1 5 | 5 Success
0 3 | 1
1 3 | 2
2 5 | 0
3 5 | 5 Crash
0 3 | 2
1 5 | 3
2 5 | 4
3 2 | 5
4 5 | 5 Success
0 4 | 3
1 3 | 1
2 5 | 5 Success

Table 4.2: Examples of communication in our agent communication experiment.

While we are surprised that the communication does not look the same on every episode,
we think it is remarkable how apparently a language between the agents emerges. Due to
reward discounting, it would make sense to have as few communication steps as possible.
Still, the agents seem to decide, that it is more valuable to add more communication steps
to reach an agreement, instead of going straight to the end of communication.
It is also interesting that agent 2 never seems to respond with the same action as agent 1.
The question, if such a behavior could be learned in a less constrained environment is
discussed in 6 Discussion and Outlook.

25

4.3. Distributed Architecture and Parallelism CHAPTER 4. EXPERIMENTS

4.3 Distributed Architecture and Parallelism

Distributed Training

One of the main advantages of the A3C algorithm is its ability to be used in a distributed
manner. This allows running multiple versions of the environment asynchronously and
collect the updates for both the actor and the critic network in a central place. To fully
take advantage of this mechanism, we implemented a system that allows to run a large
number of environments at the same time. All running training-instances contribute to the
same central network. Thanks to HTTP-based connections, we can use this mechanism
even between computers or across networks. This approach is only limited by the capability
of the central model server and the network throughput.
Additionally, our central model server not only handles the update of the neural network
but also distributes the code for building observations, predictions and a file with all
hyperparameter required for training on startup. The startup process of the worker node
then converts the code for building observations and predictions into native C-code using
Cython. This converted code then gets compiled and dynamically imported as a Python
module.
Using native C-code speeds up the roll-out of the environment and therefore the training
process by a factor of 2 to 5.

Worker n Model Server

get training files

observations.pyx, network.pyx
params.py

Compile observations.pyx,
network.pyx

Episode rollout

get current network weights

weights of the neural network

Calculate gradient update

post gradient update

confirm gradient update

Figure 4.6: Training of a single worker process. The communication between the worker
and the model server works by using HTTP. The compilation of the .pyx-files
is only done once on each machine.

To improve the performance of the system, we compress both the weights (server to the
worker) and the gradient update (worker to the server) using ZLib. This reduces the size
of the transmitted data between 10% to 80%.

26

CHAPTER 4. EXPERIMENTS 4.3. Distributed Architecture and Parallelism

Figure 4.7: Illustration of distributed architectures with the main node (node 1) and sev-
eral additional nodes (2-w) connected over HTTP.

Experiment Setup

To analyze the impact of training a policy with multiple workers at the same time, we
run an experiment that compares training with a single worker to training with 7 workers
at the same time. We use the default analysis environment that includes reduced actions
but no curriculum learning.

Experiment Analysis

While it is apparent in Figure 4.8 that having multiple workers does speed up the training
process, we do not observe any impact of the number of workers on the quality of the pol-
icy. These results are consistent with the observation that training with even more than
7 workers speeds up training, but has no noticeable effect on the quality of the policy.

00:00h
02:00h

04:00h
06:00h

08:00h
10:00h

12:00h

Hours of training

0

2

4

6

8

10

N
um

be
r

of
ag

en
ts

ar
riv

in
g

7 workers
1 worker

Figure 4.8: Comparison of training with 1 worker to training with 7 workers.

27

4.3. Distributed Architecture and Parallelism CHAPTER 4. EXPERIMENTS

Infrastructure

The infrastructure used for this project consists of 4 machines used in various combina-
tions.

• Draft Animal (DRAN): Server with 56 CPUs and 721 GB of RAM. This machine
is mainly used to train the current submission model.

• Openstack machines: 3 servers with 8 CPUs each. One machine has 16 GB of
RAM, the other two have 64 GB each.

The A3C algorithm is not able to take advantage of GPUs. The reason for this is the
fragmented update process. Differently than with an experience replay buffer, the training
data is only used once and gets then discarded.

28

5 Results

5.1 Round 1

Our submission for Flatland round 1 does not include all algorithmic improvements dis-
cussed in this work. None the less, we were able to achieve a significant improvement
in performance compared to the baseline version from [2]. Our submission for round 1
contains the following components:

• Custom A3C implementation without experience replay buffer.

• Default TreeObsForRailEnv (in round 1, this was a numeric vector by default).

• Policy learned by curriculum learning.

• Distributed training over multiple processes on the same machine (no cross-machine
distribution possible yet).

Using the performance evaluation system provided together with the Flatland environ-
ment, we reach the following performance metrics:

Author Observation type Local Evaluation Score Submission Score
S. Huschauer reduced grid observation 19.4% 16.6%

tree observation 24.7% -
Meier/Roost tree observation 69.3% 48.9%

Table 5.1: Comparison of submission performance for Flatland challenge round 1.

5.2 Round 2

Our submission for Flatland round 2 contains all in this work discussed improvements
of the algorithm except communication. While a direct comparison is difficult due to a
lack of a baseline version for round 2, we could still show in our experiments how our
adjustments to the implementation improved the performance of our solution.
To evaluate the performance of the final model, we create an experiment with an increasing
number of agents. We use an environment of the dimensions 30x30 tiles and keep all other
environment parameters to a fixed value. Only the number of agents gets increased. For
each number of agents, we run 20 episodes and evaluate the median, the 0.25-quantile and
the 0.75-quantile.

29

5.2. Round 2 CHAPTER 5. RESULTS

0 5 10 15 20 25 30
Number of agents departing

0

5

10

15

20

25

30
N

um
be

r
of

ag
en

ts
ar

riv
in

g
Max. possible arrivals

Figure 5.1: Agents departing vs. agents arriving on a 30x30 environment.

In Figure 5.1, it can be observed that our model is performing very well for environments
with 10 agents or less. For environments with more agents, the performance gradually
gets worse. It is important to note that this change in performance is not only dependent
on the absolute number of agents but also on the density of agents relative to the size of
the environment.
The evaluation system for Flatland round 2 uses 250 different environments with sizes
between 20x20 to 150x150 [11]. The number of agents varies from 50 to 200. Evaluated
with the Flatland round 2 evaluator, we achieve a score of 29.1% of arriving agents. At
the time of submission, our submission performs the 4th best out of 24 contestants that
have submitted a solution for round 2 at this point. Please note, that this is not the final
ranking of the Flatland challenge.
When analyzing our solution in selected example environments, it can be observed that
agents especially struggle in two cases:

1. Two agents have to take a decision at the same time.

2. Agents deadlock each other in areas with many switches.

Possible solutions for the listed problems are discussed in both section 4.2 and chapter 6.

30

6 Discussion and Outlook

6.1 Review of the Application of Reinforcement Learning

While trying to solve the Flatland challenge with RL, we discovered a limitation of policy
gradient-based methods in high-consequence environments like Flatland. We call Flatland
a high-consequence environment because taking a bad action quickly leads to a chain re-
action of unresolvable situations. Policy gradient-based RL uses a probability distribution
over all available actions. The difficulty of combining a high-consequence environment
with a stochastic policy can be nicely shown in an example: We consider a situation
where the best action is taken with a probability of 90%, the remaining (probably non-
beneficial actions) have a combined chance of 10% to be selected. For 10 agents with such
a probability distribution, there is already a 65.1% chance that one of the agents takes a
non-beneficial action and creates a chain reaction of problems. Just converting this prob-
ability distribution into a deterministic policy by using the 𝑎𝑟𝑔𝑚𝑎𝑥 over the probability
distribution does not solve the problem due to some situations in which the agent is not
sure what to do and therefore assigns similar probabilities to the actions. The algorithm
then relies on its stochasticity to try all available actions. Therefore it would be interesting
to experiment with value-based RL algorithms to observe, if such algorithms can overcome
the described problem that policy gradient methods have. In most popular use-cases of
RL such as Atari games, it will suffice to just select a good action and not necessarily the
best. This is different in Flatland and should therefore be addressed.

6.2 Practicability in a Real-World Scenario

While we were able to greatly improve the performance of the presented solution compared
to the given baseline, it is still nowhere near practical applicability. While the presented
evaluation tasks probably do not represent the real-world density on a rail network, also
with a lower volume of traffic, train traffic would require more robust solutions with the
primary objective of finding a solution for every train to reach its destination instead of
optimizing the performance of a single agent.

6.3 Ideas for Future Research

We think that in order to further improve performance, the problem would need to be
formulated in a different way. While the research presented in this work is mainly fo-
cused on treating the trains as agents in a multi-agent reinforcement learning problem, it
might be an interesting approach to introduce a central planning agent that takes over all
planning in advance. Especially in a simulated environment like Flatland with perfect in-
formation, we think that upfront planning would have the potential to take full advantage

31

6.3. Ideas for Future Research CHAPTER 6. DISCUSSION

of the available data and the possibility to iteratively plan the upcoming steps. With all
planning done by a single agent, it would also remove the requirement for communication.
While we could show in section 4.2 that it is possible to learn communication protocols
between agents, we think that in a less constructed example the convergence towards a
usable communication protocol might be too slow to actually use it in real-world training
with many agents.
Combined with the possibility of a centrally planning agent, we think that converting the
rail network into a logical graph would enable any training algorithm to perform better
without the need for respecting the tile-based architecture of the Flatland environment.
In section 4.2, we already take a step in this direction by reducing the actions required for
each agent.
An alternative to the centralized planning approach could be something similar to the so-
lution presented by Ephrati and Rosenschein in [17]. They propose to plan on a local level
and merge the locally found solutions into a global plan. Using the presented subgoals it
could be possible to resolve local conflicts and iteratively move into a direction of a global
solution.

32

7 Listings

7.1 Bibliography

[1] E. Nygren, S. Mohanty. Flatland challenge. [Accessed: 2019-11-13]. [Online].
Available: https://www.aicrowd.com/challenges/flatland-challenge

[2] S. Huschauer, “Multi-agent based traffic routing for railway networks.”

[3] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” 2016.

[4] G. Bacchiani, D. Molinari, and M. Patander, “Microscopic traffic simulation by co-
operative multi-agent deep reinforcement learning,” 2019.

[5] E. Nygren, S. Mohanty, C. Baumberger, C. Eichenberger, A. Egli, M. Ljungström,
G. Mollard, G. Spigler, J. Watson. Flatland documentation. [Accessed: 2019-12-01].
[Online]. Available: http://flatland-rl-docs.s3-website.eu-central-1.amazonaws.com/

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013. [Online]. Available: https://arxiv.org/pdf/1312.5602.pdf

[7] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A
general reinforcement learning algorithm that masters chess, shogi, and go through
self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018. [Online]. Available:
https://science.sciencemag.org/content/362/6419/1140

[8] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mor-
datch, “Emergent tool use from multi-agent autocurricula,” 2019.

[9] R. S. Sutton, “Learning to predict by the methods of temporal differences,”
Machine Learning, vol. 3, no. 1, pp. 9–44, Aug 1988. [Online]. Available:
https://doi.org/10.1007/BF00115009

[10] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods
for reinforcement learning with function approximation,” in Proceedings of the 12th
International Conference on Neural Information Processing Systems, ser. NIPS’99.
Cambridge, MA, USA: MIT Press, 1999, pp. 1057–1063. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3009657.3009806

[11] E. Nygren. Flatland faq. [Accessed: 2019-12-09]. [Online]. Available: https:
//gitlab.aicrowd.com/flatland/flatland/blob/master/FAQ_Challenge.md/

33

https://www.aicrowd.com/challenges/flatland-challenge
http://flatland-rl-docs.s3-website.eu-central-1.amazonaws.com/
https://arxiv.org/pdf/1312.5602.pdf
https://science.sciencemag.org/content/362/6419/1140
https://doi.org/10.1007/BF00115009
http://dl.acm.org/citation.cfm?id=3009657.3009806
https://gitlab.aicrowd.com/flatland/flatland/blob/master/FAQ_Challenge.md/
https://gitlab.aicrowd.com/flatland/flatland/blob/master/FAQ_Challenge.md/

Bibliography BIBLIOGRAPHY

[12] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent control
using deep reinforcement learning,” in Autonomous Agents and Multiagent Systems,
G. Sukthankar and J. A. Rodriguez-Aguilar, Eds. Cham: Springer International
Publishing, 2017, pp. 66–83.

[13] L. Rusch, “Exploration-exploitation trade-off in deep reinforcement learning.”

[14] E. Nygren, S. Mohanty, C. Baumberger, C. Eichenberger, A. Egli, M. Ljungström,
G. Mollard, G. Spigler, J. Watson. Flatland specification. [Accessed: 2019-12-07].
[Online]. Available: http://flatland-rl-docs.s3-website.eu-central-1.amazonaws.com/
04_specifications.html/

[15] Python - global interpreter lock. [Accessed: 2019-12-19]. [Online]. Available:
https://wiki.python.org/moin/GlobalInterpreterLock

[16] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique of multiagent
deep reinforcement learning,” 2018.

[17] E. Ephrati and J. S. Rosenschein, “Multi-agent planning as the process of merging
distributed sub-plans,” 1993.

[18] Aicrowd: Crowdsourcing ai to solve real-world problems. [Accessed: 2019-12-17].
[Online]. Available: https://www.aicrowd.com/

[19] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, July 1948. [Online]. Available:
https://ieeexplore.ieee.org/document/6773024

34

http://flatland-rl-docs.s3-website.eu-central-1.amazonaws.com/04_specifications.html/
http://flatland-rl-docs.s3-website.eu-central-1.amazonaws.com/04_specifications.html/
https://wiki.python.org/moin/GlobalInterpreterLock
https://www.aicrowd.com/
https://ieeexplore.ieee.org/document/6773024

LIST OF FIGURES 7.2. List of Figures

7.2 List of Figures

2.1 Reinforcement learning overview . 8
2.2 Screenshot from a running Flatland environment. 10
2.3 Possible switches in the Flatland environment from [5]. 10
2.4 Comparison between two screenshots from evaluation environments from

Flatland round 1 and round 2. 12

3.1 Illustration of the tree observation mapped onto the Flatland environment.
Each colored bar represents information about a section. 15

4.1 Screenshot from Flatland environment. A train heading to the left. The
only reasonable action is to ride forward. 18

4.2 Comparison of training with and without action reduction 19
4.3 Comparison of training performance between a version with an LSTM-layer

and a version without. It is evident that the version with LSTM performs
better than the version without. 20

4.4 Comparison of training performance between a version with and a version
without curriculum learning. 22

4.5 Screenshot of the communication experiment setup. 24
4.6 Training of a single worker process. The communication between the worker

and the model server works by using HTTP. The compilation of the .pyx-
files is only done once on each machine. 26

4.7 Illustration of distributed architectures with the main node (node 1) and
several additional nodes (2-w) connected over HTTP. 27

4.8 Comparison of training with 1 worker to training with 7 workers. 27

5.1 Agents departing vs. agents arriving on a 30x30 environment. 30

35

7.3. List of Tables LIST OF TABLES

7.3 List of Tables

3.1 The most important technologies used in this work. 16

4.1 Curriculum level specifications for our experiment to compare a version
with curriculum to a version without. 21

4.2 Examples of communication in our agent communication experiment. 25

5.1 Comparison of submission performance for Flatland challenge round 1. . . . 29

7.1 Glossary definitions . 37
7.2 Abbreviations . 38

36

LIST OF TABLES 7.4. Glossary

7.4 Glossary

Hint: For abbreviations, see 7.5 Abbreviations.

Term Explanation

Agent
An agent is the entity that needs to take a decision, based on its
current situation. In this work, an agent usually corresponds
with a train.

AICrowd
A crowdsourcing platform for competitions about machine
learning [18]. The Flatland challenge has been partly organized
by AICrowd.

Asynchronous
Advantage Actor-
Critic Algorithm

A state of the art algorithm for reinforcement learning [3].

Deep Q-Network A reinforcment learning technique propose by Mnih et. al that
uses recorded experience for training [6].

Episode The cycle of taking actions and receiving a new state until the
environment has reached a terminal state.

Entropy

A term for how much randomness can be expected from a vari-
able [19]. For a single variable an entropy of 1 corresponds to
complete randomness, and entropy of 0 corresponds to com-
plete certainty. Abbreviated as ℋ.

Environment A system for reinforcement learning agents to learn. In this
work, an environment is usually a Flatland rail simulation.

Hypertext Trans-
fer Protocol

A stateless protocol to transfer data between different applica-
tions on the application layer.

Observation The information extracted from the environment needed to
make a decision. Abbreviated as 𝑠.

Policy The rules used to decide which action to take, based on a given
state. Abbreviated as 𝜋.

Rectified Linear
Unit

An activation function for neural networks. It is a piecewise
linear function, if the result is positiv the output will be the
input otherwise it will return zero.

Reinforcement
Learning See: 2.1 Reinforcement Learning.

Reward The scalar value an agent can receive in a reinforcement learn-
ing task. Positive for good actions, negative for bad ones.

Worker
A process that repeatedly rolls out Flatland environments to
create training experience for the reinforcement learning algo-
rithm.

ZLib A Python module to compress and decompress data.

Table 7.1: Glossary definitions

37

7.5. Abbreviations LIST OF TABLES

7.5 Abbreviations

The explanations can be found in 7.4 Glossary.

Abbr Abbreviation
A3C Asynchronous Advantage Actor-Critic Algorithm
CPU Central processing unit
DQN Deep Q-Network
GPU Graphics processing unit
HTTP Hypertext Transfer Protocol
LSTM Long short-term memory
RAM Random-access memory
ReLU Rectified Linear Unit
RL Reinforcement learning
RSP Re-scheduling problem
SBB Swiss Federal Railways
TMS Traffic management systems

Table 7.2: Abbreviations

38

8 Appendix

If you are interested in the source code of this work, you can reach us at:
dano.roost@gmail.com or ralphlmeier@gmail.com

8.1 USB Flash Drive Content

The attached USB flash drive contains the following content:

• This report as PDF

• The source code of all experiments

• The source code of the final training (final state)

• The best submission for round 1 and round 2

8.2 Official assignment

39

zurück Logout

Projektarbeit 2019 - HS: PA19_wele_01

Allgemeines:

Titel: Reinforcement Learning mit einem Multi-Agenten System für die Planung von Zügen
Anzahl Studierende: 2
Durchführung in
Englisch möglich: Ja, die Arbeit kann vollständig in Englisch durchgeführt werden und ist auch für Incomings geeignet.

Betreuer: Zugeteilte Studenten:

HauptbetreuerIn: Andreas Weiler, wele
NebenbetreuerIn: Thilo Stadelmann, stdm

Diese Arbeit ist zugeteilt an:
- Ralph Meier, meierr18 (IT)
- Dano Roost, roostda1 (IT)

Fachgebiet: Studiengänge:

DA Datenanalyse
DB Datenbanken
SOW Software

IT Informatik

Zuordnung der Arbeit : Infrastruktur:

InIT Institut für angewandte Informationstechnologie benötigt keinen zugeteilten Arbeitsplatz an der ZHAW

Interne Partner : Industriepartner:

Es wurde kein interner Partner definiert! Es wurden keine Industriepartner definiert!

Beschreibung:

Reinforcement Learning ist der Zweig des maschinellen Lernens, der sich damit beschäftigt, in einer gegebenen Umgebung durch Interaktion
automatisch herauszufinden, was das beste "Rezept" (die sog. "Policy") ist, um ein bestimmtes Ziel zu erfüllen. In jüngster Zeit erregten grosse
Erfolge der Methodik im automatischen Gameplay (Dota2, QuakeIII, Atari, Go, ...) einiges an Aufsehen. Aber wie die monatlichen Treffen des
"Reinforcement Learning Meetups Zürich" zeigen (https://www.meetup.com/de-DE/Reinforcement-Learning-Zurich/), gibt es auch immer mehr
vielversprechende Anwendungen in Industrie und Wirtschaft.

Die Hauptfrage bei dieser Arbeit ist: Wie können Züge lernen, sich automatisch untereinander zu koordinieren, um die Verspätung der Züge in
grossen Zugnetzwerken zu minimieren. Die Betreuer dieser Arbeit haben bereits eine enge Zusammenarbeit mit der SBB zu diesem Thema
aufgegleist, die als Grundlage den gerade gemeinsam ausgeschriebenen KI Wettbewerb "Flatland Challenge" hat (siehe Link unten). In dieser
Projektarbeit geht es darum, einen (Deep) Reinforcement Learning Ansatz für Flatland zu implementieren und zu evaluieren.

Informations-Link:

Unter folgendem Link finden sie weitere Informationen zum Thema:
https://www.aicrowd.com/challenges/flatland-challenge

Voraussetzungen:

Spass an der Arbeit mit Daten und Data Science Tools
Starkes Interesse am Thema Künstliche Intelligenz, insbesondere Reinforcement Learning
Sehr gute Programmierfähigkeiten (Python-Kenntnisse können im Projekt erworben werden)
Pragmatisches und systematisches Vorgehen beim Experimentieren und genauen Auswerten
Freude am wissenschaftlichen Arbeiten und den ersten eigenen Versuchen in angewandter Forschung

Die Betreuer haben viel Freude am Thema und mehrere Ideen zum Starten auf Lager; sie freuen sich auf leistungsfähige Studierende und ggf. (bei
guten Resultaten) eine gemeinsame wissenschaftliche Publikation aus der Zusammenarbeit.

zurück Logout

	Introduction
	Baseline
	Goal of this work
	Work Approach and Sectioning

	Technical and Theoretical Foundation
	Reinforcement Learning
	The Flatland Rail Environment

	Basic Implementation
	A3C Implementation
	Entropy Balancing
	Observation Design
	Technical Implementation Aspects

	Experiment Design and Analysis
	Reproducibility
	Reinforcement Learning for Flatland
	Distributed Architecture and Parallelism

	Results
	Round 1
	Round 2

	Discussion and Outlook
	Review of the Application of Reinforcement Learning
	Practicability in a Real-World Scenario
	Ideas for Future Research

	Listings
	Bibliography
	List of Figures
	List of Tables
	Glossary
	Abbreviations

	Appendix
	USB Flash Drive Content
	Official assignment

